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The effect of optical thickness on the t empera tu re  distr ibution in a mult i layered the rmal ly  
protec t ive  (heat-reflecting) coating is considered.  A numerica l  method of solution is p r e -  
sented for  nonlinear problems.  

We shall consider  the one-dimensional  problem of heat conduction in a mult i layered heat - ref lec t ing  
coating with due allowance for  the volumetr ic  absorpt ion of the external  the rmal  radiation.  Severa l  papers  
have been devoted to par t i cu la r  cases  of the problem [1-3]. In this paper  we shall give an analytical solu- 
tion of the l inear  s teady-s ta te  problem for an a r b i t r a r y  number  of layers ,  and a numerical  method of solu- 
tion for  nonlinear problems.  We shall allow for the contact res i s tance  between the various l ayers  of the 
coating, the dependence of the absorption coefficient of the mater ia l  on the coordinate,  and boundary condi- 
tions of a r b i t r a r y  form.  We shall give severa l  specific solutions by way of example. 

1. P r e s e n t a t i o n  of  t h e  P r o b l e m .  S t e a d y - S t a t e  S o l u t i o n s  

The t empera tu re  distr ibution in the layers  ~ j-I -~ x ~- ~ j of the coating is descr ibed by a success ion  
of quasi l inear  equations of the parabol ic  type 

with boundary conditions 

aT ([.)] = o, Fo[t, T(~0), ~xT (~0)] =0 ,  F~[ t ,T (~ ,~ ) , -~x  

discontinuity conditions for  the t empera tu re  and its der ivat ive  with respec t  to x at the point ~j 

and the initial distr ibution 

(1) 

(2) 

(3) 

T/~ x) =T~(x),  1 ~ ] -4 n. (4) 

r The functions Fj in Eqs. (1) give the intensity of heat evolution within the volume of the l ayers  resul t ing 
f rom the absorption of thermal  radiation, F~ gives the intensity of other distr ibuted thermal  sources .  
Neglecting dissipation p roces se s ,  we may obtain the following differential  equation for  the radiat ion flux 
density q~ integrated over  all f requencies  of the inf rared par t  of the spect rum and averaged with respec t  
to  angle 

dq~ = - -  kj (x) q~dx. (5) 

r r 0 Integrating (5) and allowing for  the initial condition qj (~ j - i  + 0) = qj , 1 _< j __ n, we find an explicit  expres -  
sion for  q~(x): 
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I q~(x) = q~~ ~-- /' kj (s)ds  , 1 .~-. ] -4  n. (6) 
�9 \ @ - 1  J 

Correspondingly the functions F~ take the fo rm 

r0ex = - -  k j (x )q  i p - -  k j(s)ds . (7) 
d x  g i 

The boundary conditions (2) are  not assumed l inear  and may include t e r m s  corresponding to such mecha-  
nisms of heat t r a n s f e r  at the sur faces  x = f 0, x = i n  as convection, radiation,  sublimation, chemical  r e a c -  
tions, etc. The diseontinuity conditions (3), two at each point ~ j for  1 <_ j _< n - 1 ,  r ep re sen t  the laws of 
energy  and momentum conservat ion at the points of contact between the layers ;  these a re  in general  also 
nonlinear functions of the i r  arguments .  These are  most  f requent ly  used in the form 

/ ~  O T \ I  = ()~ 0~T / = R ; ' T  '~j+~ (8) 
I -~-x) x = ~ 7 0  Ox/~=~j+0 ~j-o 

corresponding to ideally close (Rj -~ 0) or  rea l  (Rj > 0) contact between the surfaces .  If some of the layers  
a re  separa ted  by empty spaces,  through which only radiat ive heat t r ans fe r  occurs ,  with an effective emis -  
s ivi ty  of e j, the corresponding discontinuity condition takes the fo rm 

OF , (X OT \] ~ ' ~ J + ~  
= ej f fT  ] . 

There  may also be eases  in which concentrated heat sources  or sinks occur  at individual points in the gaps 
separat ing the l ayers  of the coating. All these forms  of thermal  interact ion of the l ayers  are  contained as 
pa r t i cu la r  eases  in (3). Subsequently we shall use a dimensionless  form of Eqs. (1) and the initial data (4). 

OUj n(1) (~2Uj , ()(2) QD =Q}o( O u , )  
- b T = ~ j  0 7 - : ~ j  , , ~, x, . j ,  -g~ , i =  1, 2, (1,) 

uj(r x) = u~ 1 .<' i ~< n. (4') 

Equations (2) and (3) may also be converted into dimensionless  form and united into a singIe sys tem,  which 
together  with (4') may then be considered as the sys tem of boundary conditions of a many-point  boundary 
prob lem for  Eqs. (1') with (% x) ~ [~-0 r l ]  x [f0, in]:  

# ['~, u(~j_l+_O), Ou ~x(~_~ • o), .(~j • o), 
(3') 

O--x- (~j -+ 0) ----0, i = l ,  2; l~<] .<n .  

In Eqs. (1'), (3'), (4'), and subsequently everywhere  else,  x is t rea ted  as a dimensionless  coordinate.  We 
also introduce the dimensionless  absorpt ion coefficient K, re la ted  to k and the charac te r i s t i c  l inear  dimen- 
sion L by the re la t ion  K = Lk. 

Let  us consider  the s teady-s ta te  l inear  problem with the additional assumptions Xj = const, F~ ~ 0. 
In this ease Eqs. (1') take the fo rm 

qj t~ j (x)  exp  - -  _ j ( s )  ds , l ~ ] - . < n .  (9) 

It is easy  to check that the general  soIution of each of these equations is given by the express ion  

uj (x) = % (x - -  ~j) + ~j + vj (x). (10) 

The functions vj(x) a re  pa r t i cu la r  solutions of the inhomogeneous equation 

v:(x)=qJ~fil[t--exp(--SKj(u)dut]ds'- " ~i-~ " 

Thus the prob lem of integrating Eq. (1') and of satisfying the boundary conditions (3') are  separa te  in the 
presen t  ease.  The solution of the f i r s t  p roblem is given by Eqs. (10). The a r b i t r a r y  constants ozj and Bj 
in (10) are  found f rom the sys tem of boundary conditions (3'). In the ease  in which the discontinuity con- 
ditions have the v e r y  simple form (8) and the boundary conditions (2) a re  l inear ,  the problem of finding the 
coefficients a j, ~j reduces  to a solution of the sys tem of 2n l inear  equations: 
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ao% + bo[~ ~ -~- c o = 0 (F o = 0); 

dvj (~j) ~ -  (~q+l/~,j) = (LI~'.iRj) [~./+1 - -  ~j(~J ~ ~i--1) - -  f i . ~  - -  O/(~,/)], 
=~ + ~x a~+~ 

In the l imit ing case  of an opt ica l ly  inf ini tely th ick  outer  l a y e r  with K 1 --* ~ ,  the zone of abso rp t ion  of the 
ex te rna l  r ad ia t ion  moves  to the su r f a c e  x = ~0. We in tegra te  Eq. (9) f o r  j = 1 be tween ~0 and ~ 0 + e: 

dUl 
--~(~o) + q~ - -  q~ (~o -~' e) = exp ( - -K~) .  

If we s u c c e s s i v e l y  take  Ki to ~o and e to ze ro ,  we obtain a new boundary  condi t ion fo r  x = } 0 

du~ 
(~o + O) = Q~ + qa. 

Here  QF denotes  all the " t ru ly"  su r f ace  d i m e n s i o n l e s s  t h e r m a l  f luxes in t roduced  f r o m  outs ide ,  while ql is 
the  flux of r ad ia t ion  abso rbed  in an inf ini te ly  thin l a y e r  c lose  to the s u r f a c e  x = ~ 0- In this l imi t ing  case  
Eqs .  (9) take an e x t r e m e l y  s imple  f o r m  

d~uJ--O, 1 ~ j . ~ n .  
dx 2 

2.  T r a n s i e n t  P r o b l e m s .  E x a m p l e s  

The t r ans i en t  p r o b l e m  of Eq. (1') with condi t ions  (3') and (4') is solved n u m e r i c a l l y  by  means  of the 
impl ic i t  s c h e m e :  

Q)I) d2uj A_13(2) (1 + k) u j - -v j  --k u~--wj =-D,(uj), k -  ho (11) 
-dxx ~ ~'~i = h~ h w h~--h~ " 

The r igh t -hand  s ide of this equation cons t i tu tes  the de r iva t ive  Ouj/~r(% x) e x p r e s s e d  in t e r m s  of the vj and 
wj d i s t r ibu t ions  r e s p e c t i v e l y  a s soc i a t ed  with the ins tants  of t ime  T - h  v and T - h  w. At the f i r s t  s tep in the 
in tegra t ion  with r e s p e c t  to z the p a r a m e t e r  k in (11) is f o r m a l l y  taken  as ze ro .  Since the impl ic i t  s c h e m e  
is s table  fo r  any  ra t io  of the t ime s tep to  the space  step,  in tegra t ion  with r e s p e c t  to T m a y  be c a r r i e d  out 
with an independent  choice  of s teps ,  sa t i s fy ing  any p r e a s s i g n e d  a c c u r a c y .  The non l inea r  boundary  p r o b l e m  
fo r  Eqs.  (11) with boundary  condit ions (3 T) is solved at e v e r y  fixed instant  of t ime  ~- by  a c e r t a i n  mod i f i ca -  
t ion  of the span method with i t e ra t ions .  The f o r m u l a s  of the c o r r e s p o n d i n g  a l g o r i t h m  were  cons ide red  in 
deta i l  in [4] and m a y  be applied to the p r e s e n t  case  without any  changes .  The s t e a d y - s t a t e  d i s t r ibu t ions  a r e  
obtained,  e i ther  as  the na tura l  r e su l t  of the set t l ing of the t r a n s i e n t  solution,  or  e lse  as  the se t  of va lues  
obtained at the f i r s t  t ime  step for  which it is suff ic ient  to  t r e a t  the s tep h w in Eqs .  (1l) as  e x t r e m e l y  l a rge  
(hw(DT(uj) ~ 0)). As a c r i t e r i o n  fo r  judging how c lo se ly  the app rox ima t ion  u! k) of the k - t h  i t e ra t ion  ap-  ] 
p r o a c h e s  the exac t  solut ion of the boundary  p r o b l e m ,  we m a y  take the funct ional  of the m e a n - s q u a r e  dev ia -  
t ion  mismatch)  with r e s p e c t  to Eqs.  (11) and condit ions (3~): 

' i = i  ~/-1 

Q~ R .4' 

Fig.  1. T w o - l a y e r  c o a t i n g -  sub-  
s t r a f e  sy s t e m .  

l 

]2.x )%1 fs 
As a solut ion to the bounda ry  p r o b l e m  (11), (3') we take  that  {ulk)}~" 

fo r  which the inequal i ty  5 k -< e 1 is sa t i s f ied ,  where  e I is s o m e  p r e -  
a s s igned  pos i t ive  number ,  accep ted  as the p e r m i s s i b l e  e r r o r  in the 
i t e ra t ive  p r o c e s s  of solving (11), (3v). If we have a l r e a d y  found the 
solut ion {uj} fo r  the ins tants  of t ime  •w and 1- v (T w < Tv), then the 
solut ion at the  ins tant  r(T = T v = hv) will be cons t ruc t ed  as  se t  out 
above.  Let  us use  P to denote  the c o r r e s p o n d i n g  o p e r a t o r  

{u~(~, x ) } = p [ w ,  ~ ,  v, ~o, ~l. 
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Fig.  2. Tempera tu re  d i s t r i bu t ions ,  a) fo r  
t = 2; 3.75; 10; 10,25; 15 and 15.25 see w i th  
R =  0; b) fo r  t = 3  and 3.25 s e c w i t h R =  1; 
c) fo r  t = 15 and 15.25 see w i th  R = 1. 

The integration step with respect to T is chosen so as 

to satisfy the inequalities 

(12) 
+ , %+--h~ %--,h~ ' - ~ 2 .  

2 ~ , " 

H e r e  e 2 is  any p r e s p e c i f i e d  n u m b e r ,  t a k e n  as  the  e r r o r  
in the  t i m e - i n t e g r a t i o n  of EO. (1 ') ,  s u b j e c t  to  the  cond i -  
t ions  (3 ') .  

Le t  us  c o n s i d e r  s o m e  e x a m p l e  of the  n u m e r i c a l  
so lu t i on  of the  t r a n s i e n t  p r o b l e m  fo r  a t w o - l a y e r  s y s -  
t e m  (Fig .  1). The o u t e r  l a y e r  of th i s  s y s t e m  p l a y s  the  
p a r t  of a s e m i t r a n s p a r e n t  coa t ing ,  wh i l e  the  i n n e r  l a y e r  
is  the  s u b s t r a t e ,  the  t e m p e r a t u r e  of which  is to be 
m a i n t a i n e d  wi thin  a s p e c i f i e d  r a n g e  of v a l u e s  o v e r  a 
c e r t a i n  i n t e r v a l  of t i m e .  In o r d e r  to d e t e r m i n e  the  
s p e c i f i c  in f luence  of the  op t i c a l  t h i c k n e s s  of t he  l a y e r s  
on the t e m p e r a t u r e  d i s t r i b u t i o n ,  we t ake  the  t h e r m o -  
p h y s i c a l  c h a r a c t e r i s t i c s  of the  l a y e r s  and the a b s o r p -  
t ion  c oe f f i c i e n t s  a s  cons tan t .  We w r i t e  Eqs.  ( l ' )  and 
(3') in the  f o r m  

Ou ^ O2u 
O~: -q)~Tx ~+Q~' xE(O, x0O(x. 1), (13) 

Ou 
@x~(O) = -  QE, (~1/~.2)@ ( x I - - O )  = - ~ ( X  1 + 0 ) ,  

r o X 

Ou O) (x~ + O) - -  u (x~ - -  0), R ~ ( ~ -  = .  

Ou 
- -  ( 1 )  = A~ (u i - -  u) .  ( 1 4 )  
8x 

The c oe f f i c i e n t s  of Eq. (13) a r e  d e t e r m i n e d  by  the  r e -  
l a t i ons  

0 .~ x ~ xl: Q1 = L~te/clPl L~, 

O~ = (q,.I,K{Qo1T,L) exp ( - -  Klx), 

x t < x  ~ 1:Q1 =?~t,/Gp~L 2, 

Q2 = (q,t*Kdc~p2T, L)exp [(K2 - -  K~)x~] exp ( - -  K~x). 

The in i t i a l  d i s t r i b u t i o n  of u ( r  ~ x) was  t a k e n  as  u n i f o r m  
in a l l  the  e a s e s  c o n s i d e r e d :  u(~ "~ x) -= u ~ The t h e r m o -  
p h y s i c a l  c h a r a c t e r i s t i c s  of the  l a y e r s  w e r e  s p e c i f i e d  on 
the  b a s i s  of the  p r o p e r t i e s  of s i l i c o n  c a r b i d e  (?ti, el ,  Pl) 

and t i t a n i u m  (X2, c2, P2) [5]. In v i ew of the  a b s e n c e  of r e l i a b l e  d a t a  r e g a r d i n g  the op t i ca l  p r o p e r t i e s  of the  
m e d i a  in the  i n f r a r e d  r e g i o n ,  the  d i m e n s i o n l e s s  a b s o r p t i o n  e o e f f i c i e n t s  w e r e  s p e c i f i e d  a r b i t r a r i l y  K 1 = 0.5; 2; 
K 2 = 10. The  r e m a i n i n g  q u a n t i t i e s  in the  d i m e n s i o n l e s s  func t ions  Ql,  Q2 and the  c o e f f i c i e n t s  of the  b o u n d a r y  
cond i t ions  (14) w e r e t .  = 1 0 3 s e e ,  L = 2  cm,  x i = l  era,  T .  =103 ~ u ~  = 0 . 3 ,  A i = 1 0  -2, QE = 0 . 2  [6]. 
We c o n s i d e r e d  two f o r m s  of i n t e r a c t i o n  be tw e e n  the l a y e r s :  idea l  con tac t  (R = 0) and r e a l  con tac t  (R = 1). 
F o r  c o m p a r i s o n  the p r o b l e m  was  so lved  by  each  of t h e s e  v e r s i o n s  fo r  the fo l lowing  c a s e s :  

a) s u r f a c e  a b s o r p t i o n  of a t h e r m a l  f lux QE = 0.2 in the  a b s e n c e  of r a d i a t i o n  (% = q r L / X l T ,  = 0), which  
i s  equ iva l en t  to  the  f o r c i n g  out  of the  a b s o r p t i o n  zone  to the  s u r f a c e  x = ~0(QE = 0, x = 0.2, KI~ 

b) v o l u m e t r i c  a b s o r p t i o n  of an e x t e r n a l  f lux of r a d i a t i o n  of the  s a m e  i n t e n s i t y  in the  a b s e n c e  of con-  
v e c t i v e  hea t  t r a n s f e r  a t  the  b o u n d a r y  'x = ~0(QE = 0, ~ = 0.2, K~ = 0.5; 2). 
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In the numerical  solution the e r r o r s  s 1 and e 2 were taken as equal to 0.001; the norm II. II in (12) 
coincided with the norm taken in space C[0, x l] N C[xt, 1]. For  R = 0 the tempera ture  distributions r e -  
fe r red  to several  instants of t ime are  shown in Fig. 2a. The continuous lines relate to case a), the broken 
and dotted and dashed lines to case b), for K i = 0.5 and K 1 = 2, respect ively.  The existence of a contact 
res is tance  between the layers  leads to charac ter i s t ic  discontinuities in the solutions at the point ~l. The 
corresponding curves for R = 1 are  shown in Fig. 2b, c. 

3.  D i s c u s s i o n  

We see f rom Fig. 2a that the tempera ture  distribution in the layers  for k t < ~ differs great ly  f rom 
that expected with purely  convective heating, and f rom the point of view of the thermal  protect ion of the 
inner substrate  surface x = 1 the coating under consideration mast  be regarded as quite unsuitable. It may 
appear that the absolute range of variat ion of the tempera ture  is re la t ively  nar row ~or all the curves and 
that for high intensities QE the difference in the t empera tures  at x = 1 becomes (relatively) less appre-  
ciable. However, this is not in fact so. If we consider the problem of the pulsed heating of the sys tem 
during the time interval At with a fixed total quantity of heat Q = QEAt supplied in the pulse, we find that as 
At -+ 0 the intensity QE -~ :r In this limiting case, by virtue of the inertia of heat t r ans fe r  by conduction, 
the surface tempera ture  is given by the equation 

du - = I Q / A t ,  o . ~  �9 .~ At, 
d'~ ~-QE--eua' QE (0, "~>ht. 

The depth of penetrat ion of the high tempera tures  into the layers  tends to zero as At ~ 0. For  
T > At the outer surface continues to cool by radiation; at high tempera tures  this p rocess  is also much less 
inertial than the l inear heating of the layers  by conduction. Thus in the case k I ~ oo for short  At the 
g rea te r  par t  of the heat will be returned to the medium in the form of radiation and will not fall on the sub- 
strate.  If, however, the coating layer  has a considerable t ransparency,  for example, k I = 0.5, then for an 
a rb i t r a r i ly  short  At the g rea te r  par t  of the heat will be absorbed by the opaque layer  z t < x -< 1, and the 
aim of thermal ly  insulating the substrate  will not be achieved. The presence  of a contact res i s tance  be- 
tween the layers  introduces additional undesirable effects. We see f rom Fig. 2b, c that for k t < co (es- 
pecial ly  for k 1 = 0.5) the substrate layer  serves  as a "trap" for the external radiation qr. The discontinuity 
in the temperature  value at the point differs not only in magnitude but even in sign. The thermal  insulation 
of the layer  x t < x -< 1, calculated on the assumption of pure ly  convective heating of the layers  for short  
per iods of action (continuous curve in Fig. 2b) may prove unsuitable for k I < ~o, not only because the sub- 
s t ra te  is able to heat up over these periods,  but also mainly because, at the moment of interest ,  it has al- 
ready suffered rupture,  owing to the difference in the thermal  expansion coefficients of the coating and sub- 
s t ra te  materials .  It was pointed out in [7] that mater ia ls  such as borides and carbides might be considered 
as the best r e f rac to r ies  at the tempera tures  of hypersonic flight and entry into the Ear th ' s  a tmosphere  if it 
were not for their  low res is tance  to thermal  shock. The above-mentioned influence of the optical thickness 
of the coating and the contact res is tance  between the layers  gives a more specific and accura te  idea of the 
reasons underlying this behavior of the coatings. 

In conclusion, we note that, in the general  setting of (1'), (3'), (4'), the boundary conditions (3') are  
regarded as arb i t rary ,  and the problem under considerat ion may be essential ly solved quite independently 
of the outer (x < ~ 0) and inner (x > }n) problems,  whatever these may be. The a rb i t r a ry  nature of the func- 
tion kj(x) in Eq. {5) suggests the possibi l i ty of choosing the radiat ive-opt ical  proper t ies  of the sys tem in 
such a way as to secure  some~particular form of optimization, for example, minimizing the tempera ture  
jump at the point ~ i (Fig. 2b, c). 

cj, p j ,  )~j 

kj 
Rj 

qr 
t , ,  T. ,  L 

QE 

NOTATION 

are,  respectively,  the specific heat, density, and thermal  conductivity of the mater ia l  of the 
j - th  layer;  
is the absorption coefficient of the j- th layer  with respect  to infrared radiation; 
is the contact thermal  res i s tance  at the interface of the j - th  and ( j - 1 ) - t h  layers ;  
is the density of the external thermal  radiation; 
are,  respectively,  the charac ter i s t ic  time, temperature ,  and l inear dimension of the two- 
layer  sys tem (coat ing-  substrate);  
is the density of the convective thermal  flux at the surface x = ~ 0. 
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