TEMPERATURE DISTRIBUTION IN MULTILAYERED
SEMITRANSPARENT COATINGS

V. V., Frolov UDC 536.3:535.34:518.61

The effect of optical thickness on the temperature distribution in a multilayered thermally
protective (heat-reflecting) coating is considered. A numerical method of solution is pre-
sented for nonlinear problems.

We shall consider the one-dimensional problem of heat conduction in a multilayered heat-reflecting
coating with due allowance for the volumetric absorption of the external thermal radiation. Several papers
have been devoted to particular cases of the problem [1-3]. In this paper we shall give an analytical solu-
tion of the linear steady-state problem for an arbitrary number of layers, and a numerical method of solu-
tion for nonlinear problems., We shall allow for the contact resistance between the various layers of the
coating, the dependence of the absorption coefficient of the material on the coordinate, and boundary condi-
tions of arbitrary form. We shall give several specific solutions by way of example.

1. Presentation of the Problem. Steady-State Solutions

The temperature distribution in the layers gj_1 =X = gj of the coating is described by a succession
of quasilinear equations of the parabolic type
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discontinuity conditions for the temperature and its derivative with respect to x at the point £ j
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and the initial distribution
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The functions Ff in Egs. (1) give the intensity of heat evolution within the volume of the layers resulting
from the absorption of thermal radiation, FY gives the intensity of other distributed thermal sources.
Neglecting dissipation processes, we may obtain the following differential equation for the radiation flux
density qu integrated over all frequencies of the infrared part of the spectrum and averaged with respect
to angle

dg; = —k; (%) gjdx. (5)

Integrating (5) and allowing for the initial condition q]?(é -1+ 0) = q}"’, 1 = j = n, we find an explicit expres-
sion for qj-f(x):
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Correspondingly the functions Ff take the form

. X

Fig = —34 000 — | kj(s)ds). (7
N §j-1

The boundary conditions (2) are not assumed linear and may include terms corresponding to such mecha-
nisms of heat transfer at the surfaces x = ¢, x = &4, as convection, radiation, sublimation, chemical reac-
tions, etc. The discontinuity conditions (3), two at each point £jfor 1 =j=n-1, represent the laws of
energy and momentum conservation at the points of contact between the layers; these are in general also
nonlinear functions of their arguments. These are most frequently used in the form

/
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corresponding to ideally close (Rj — 0) or real (Rj > 0) contact between the surfaces. If some of the layers
are separated by empty spaces, through which only radiative heat transfer occurs, with an effective emis-
sivity of &} the corresponding discontinuity condition takes the form

(xﬂﬂ =(A£)! = &,0T*
Ox &,—0 ox lgi+0

There may also be cases in which concentrated heat sources or sinks occur at individual points in the gaps
separating the layers of the coating. All these forms of thermal interaction of the layers are contained as
particular cases in (3). Subsequently we shall use a dimensionless form of Eqs. (1) and the initial data (4):
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Equations (2) and (3) may also be converted into dimensionless form and united into a single system, which
together with (4') may then be considered as the system of boundary conditions of a many-point boundary
problem for Egs. (1') with (7, x) € [7%, 71] x [£,, £q]:
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In Egs. (1"), (3", (4"), and subsequently everywhere else, x is treated as a dimensionless coordinate. We
also introduce the dimensionless absorption coefficient K, related to k and the characteristic linear dimen-
sion L by the relation K = Lk,

Let us consider the steady-state linear problem with the additional assumptions Aj = const, F}’E 0.
In this case Egs. (1') take the form

2 3: ]
d_L:-'ijKj(x)exp (~— \ Kj(s)ds>, lLj<n. (9)
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It is easy to check that the general solution of each of these equations is given by the expression
u; (%) = o (x—§;) “+B; - v; (x). (10)
The functions Vj (x) are particular solutions of the inhomogeneous equation
x s
wr=ar {[1en(~ K 0m)|e
g1 -1 ‘

Thus the problem of integrating Eq. (1') and of satisfying the boundary conditions (3') are separate in the
present case. The solution of the first problem is given by Eqgs. (10). The arbitrary constants @jandB j
in (10) are found from the system of boundary conditions (3'). In the case in which the discontinuity con-
ditions have the very simple form (8) and the boundary conditions (2) are linear, the problem of finding the
coefficients oy, 8 j reduces to a solution of the system of 2n linear equations:
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In the limiting case of an optically infinitely thick outer layer with Ky — «, the zone of absorption of the
external radiation moves to the surface x = £;. We integrate Eq. (9) for j = 1 between £, and &, + &:

du . du -
—2 (& + &) = —E) + ¢, — g, exp(—K;2).
dx dx
If we successively take I—{1 to « and & to zero, we obtain a new boundary condition for x = £,
du
= Gt 0=+
Here QF denotes all the "truly" surface dimensionless thermal fluxes introduced from outside, while q; is

the flux of radiation absorbed in an infinitely thin layer close to the surface x = £,. In this limiting case
Egs. (9) take an extremely simple form

2, Transient Problems. Examples

The transient problem of Eq. (1') with conditions (3') and (4") is solved numerically by means of the
implicit scheme:
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The right-hand side of this equation constitutes the derivative du:/87(T, x) expressed in terms of the Vj and
A distributions respectively associated with the instants of time 7—hy and 7—hy. At the first step in the
integration with respect to T the parameter k in (11) is formally taken as zero. Since the implicit scheme
is stable for any ratio of the time step to the space step, integration with respect to 7 may be carried out
with an independent choice of steps, satisfying any preassigned accuracy. The nonlinear boundary problem
for Egs. (11) with boundary conditions (3') is solved at every fixed instant of time 7 by a certain modifica-
tion of the span method with iterations. The formulas of the corresponding algorithm were considered in
detail in [4] and may be applied to the present case without any changes. The steady-state distributions are
obtained, either as the natural result of the settling of the transient solution, or else as the set of values
obtained at the first time step for which it is sufficient to treat the step hy; in Egs. (11) as extremely large
(hy(Dr(uj) — 0)). As a criterion for judging how closely the approximation ulk) of the k-th iteration ap-
proaches the exact solution of the boundary problem, we may take the functional of the mean-square devia-
tion (mismatch) with respect to Eqgs, (11) and conditions (3'):
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g- 4 — e B if Ps /'13;2 3/2, i As a solution to the boundary problem (11), (3') we take that {ugk)}P
- f 2
- P // for which the inequality 6y < &, is satisfied, where &, is some pre-
- 7 e / assigned positive number, accepted as the permissible error in the
4 ** / iterative process of solving (11), (3'). If we have already found the
to &, £y solution {uj} for the instants of time Ty and 7y (Ty < Ty), then the
e R 4 solution at the instant 7(7 = 7y = hy) will be constructed as set out

Fig. 1. Two-layer coating —sub- above. Let us use P to denote the corresponding operator

strate system. {4;(v, )} =Plw, T,, v, 1,, Tl

1322



760

340

520

200

330

310

300

i’ "T\\
360 T ~J
i T~
/5\ ' ~
240 \
\ T .
T e e ) S _‘
\-\-—]
L — ] L/
1525 —~
0, 92 04 46 a8 X

Fig. 2, Temperature distributions: a) for
£ =2; 3.75; 10; 10,25; 15 and 15.25 sec with
R=0; b)fort=3and 3.25 sec with R = 1;
¢) for t = 15 and 15.25 sec with R = 1.

The integration step with respect to 7 is chosen so as
to satisfy the inequalities

1
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Here ¢, is any prespecified number, taken as the error
in the time-integration of Eq. (1'), subject to the condi-
tions (3"). :

Let us consider some example of the numerical
solution of the transient problem for a two-layer sys-
tem (Fig. 1). The outer layer of this system plays the
part of a semitransparent coating, while the inner layer
is the substrate, the temperature of which is to be
maintained within a specified range of values over a
certain interval of time. In order to determine the
specific influence of the optical thickness of the layers
on the temperature distribution, we take the thermo-
physical characteristics of the layers and the absorp-
tion coefficients as constant. We write Eqgs. (1') and
(3") in the form
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The coefficients of Eq. (13) are determined by the re-
lations
0 < x Ly Q= Mei/eypiL?,

Q= (g,8:K /eip T L) exp (— Ky»),
x]_ <x < 1: Q1 :}"Zt* /C2p2L21
Qo= (qyt;Kz/czpzT* Lexp [(K, — Ky)x] exp (— K,x).

The initial distribution of u{r?, x) was taken as uniform
in all the cases congidered: u(TO, x) =u’, The thermo-
physical characteristics of the layers were specified on

the basis of the properties of silicon carbide (A, cy, py)

and titanium (Ay, ¢y, py) [5]. In view of the absence of reliable data regarding the optical properties of the
media in the infrared region, the dimensionless absorption coefficients were specified arbitrarily K; = 0.5; 2;
K, = 10. The remaining quantities in the dimensionless functions @, Q; and the coefficients of the boundary
conditions (14) were t, = 10® sec, L =2 cm, x;=1cm, Ty = 10°°K, u®=u; = 0.3, A; =102, Qg = 0.2 [6].
We considered two forms of interaction between the layers: ideal contact (R = 0) and real contact (R = 1).
For comparison the problem was solved by each of these versions for the following cases:

a) surface absorption of a thermal flux Qg = 0.2 in the absence of radiation (W = gqpL/A{ T4 = 0), which
is equivalent to the forcing out of the absorption zone to the surface x = £H(Qg =0, » = 0.2, Ky

— ®});

b) volumetric absorption of an external flux of radiation of the same intensity in the absence of con-
vective heat transfer at the boundary x = £,(QE =0, ® = 0.2, K, = 0.5; 2).
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In the numerical solution the errors €y and e, were taken as equal to 0.001; the norm Il-Il in (12)
coincided with the norm taken in space C[0, x;1 N Clxy, 1]. For R = 0 the temperature distributions re-
ferred to several instants of time are shown in Fig, 2a. The continuous lines relate to case a), the broken
and dotted and dashed lines to case b}, for K; = 0.5 and Ky = 2, respectively. The existence of a contact
resistance between the layers leads to characteristic discontinuities in the solutions at the point £4. The
corresponding curves for R = 1 are shown in Fig. 2b, c.

3. Discussion

We see from Fig, 2a that the temperature distribution in the layers for k; < « differs greatly from
that expected with purely convective heating, and from the point of view of the thermal protection of the
inner substrate surface x = 1 the coating under consideration must be regarded as quite unsuitable. It may
appear that the absolute range of variation of the temperature is relatively narrow for all the curves and
that for high intensities Qg the difference in the temperatures at x = 1 becomes (relatively) less appre-
ciable, However, this is not in fact so. If we consider the problem of the pulsed heating of the system
during the time interval At with a fixed {otal quantity of heat Q = QgAt supplied in the pulse, we find that as
At — 0 the intensity Qg — «. In this limiting case, by virtue of the inertia of heat transfer by conduction,
the surface temperature is given by the equation

du o = [QUAL 0<CTCAY,
e Qe = 0, T>AL

The depth of penetration of the high temperatures into the layers tends to zero as At — (0. TFor
T > At the outer surface continues to cool by radiation; at high temperatures this process is also much less
inertial than the linear heating of the layers by conduction. Thus in the case ki — « for short At the
greater part of the heat will be returned to the medium in the form of radiation and will not fall on the sub-
strate. If, however, the coating layer has a considerable transparency, for example, k; = 0.5, then for an
arbitrarily short At the greater part of the heat will be absorbed by the opaque layer x; < x = 1, and the
aim of thermally insulating the substrate will not be achieved. The presence of a contact resistance be-
tween the layers introduces additional undesirable effects. We see from Fig. 2b, ¢ that for k; < « (es-
pecially for ky = 0.5) the substrate layer serves as a "trap" for the external radiation qy. The discontinuity
in the temperature value at the point differs not only in magnitude but even in sign. The thermal insulation
of the layer x; < x = 1, calculated on the assumption of purely convective heating of the layers for short
periods of action (continuous curve in Fig. 2b) may prove unsuitable for k; < ©, not only because the sub-
strate is able to heat up over these periods, but also mainly because, at the moment of interest, it has al-
ready suffered rupture, owing to the difference in the thermal expansion coefficients of the coating and sub-
strate materials. It was pointed out in [7] that materials such as borides and carbides might be considered
as the best refractories at the temperatures of hypersonic flight and entry into the Earth's atmosphere if it
were not for their low resistance to thermal shock. The above-mentioned influence of the optical thickness
of the coating and the contact resistance between the layers gives a more specific and accurate idea of the
reasons underlying this behavior of the coatings.

In conclusion, we note that, in the general setting of (1'), (3'), (4'), the boundary conditions (3') are
regarded as arbitrary, and the problem under consideration may be essentially solved quite independently
of the outer (x < £y) and inner (x >{y) problems, whatever these may be. The arbitrary nature of the func-
tion kj(x) in Eq. (5) suggests the possibility of choosing the radiative-optical properties of the system in
such a way as to secure some particular form of optimization, for example, minimizing the temperature
jump at the point &, (Fig. 2b, c).

NOTATION
Cjs Pjs )‘j are, respectively, the specific heat, density, and thermal conductivity of the material of the
j-th layer;
K; is the absorption coefficient of the j-th layer with respect to infrared radiation;
Rj is the contact thermal resistance at the interface of the j-th and (j—1)-th layers;
dp is the density of the external thermal radiation;

ty, Tx, L are, respectively, the characteristic time, temperature, and linear dimension of the two-
layer system (coating —substrate);
QE is the density of the convective thermal flux at the surface x = £,.
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